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Abstract

We consider single-phase and multiphase disequilibrium processes in presence of nonlinear heat and mass transfer as

well as chemical or electrochemical reactions. An approach accepted distinguishes in each elementary process, diffusive

or chemical, two competing (unidirectional) fluxes. They are equal in the state of thermodynamic equilibrium and their

difference off equilibrium constitutes the observed resulting flux representing the rate of chemical reaction. We stress the

role of nonlinear chemical (electrochemical) resistance and chemical (electrochemical) affinity. The nonequilibrium

systems under investigation are described by equations of nonlinear kinetics of Marcelin–de Donder type containing

exponential terms with respect to chemical potentials of Planck and temperature reciprocal, that simultaneously are

analytical expressions characterizing the transport of the substance or energy by the energy barrier. We show how the

kinetics of this sort follows from the law of mass action, what are its consequences closely and far from equilibrium, and

also how a basic equation of chemical or electrochemical kinetics (Butler–Volmer) emerges. We also stress the sig-

nificance of nonlinear chemical (electrochemical) resistance and of the chemical (electrochemical) affinity. Simulta-

neously we stress restrictiveness of the discrete energy barrier, which is not capable of avoiding mean quantities

characteristic of the whole barrier and connected with finite affinities or driving forces.

To describe the chemical transformation as a motion through the energy barrier treated as a continuum an effort is

made to replace the logarithmic chemical resistance (a mean quantity associated with a finite affinity) by its local

counterpart. The result is a continuous description, governed by a principle of Fermat type with an infinite number of

infinitesimal refractions of the ray. The results show that the path of chemical complex bends into a direction that

ensures its shape associated with longest residence time in regions of lower resistivity. These properties make it possible

to predict shapes of chemical paths.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In this work nonlinear kinetics are analyzed in sys-

tems that may react chemically (electrochemically) and
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may exhibit phase changes. The research method in-

vestigates phenomena of nonlinear diffusion, heat con-

duction, phase changes and chemical reactions in the

context of nonlinear resistances, extended chemical af-

finity, theory called thermokinetics and variational

principle of Fermat type.

The meaning of chemical reaction coordinate and the

second law of thermodynamics are applied. Chemical

Ohm’s law, rj ¼ Aj=Rj, which defines the resulting rate

of an elementary process, is transformed into a local

form resembling the Fourier’s law of heat conduction. In
ed.

mail to: sieniutycz@ichip.pw.edu.pl


Nomenclature

A area perpendicular to flow

A0 constant area of a flux tube intercepted by

the interface

As vector of chemical affinities As
j (entropy

representation)

A affinity of chemical reaction

aiðciÞ activity of ith component in terms of its

concentration ci
Fi Gibbs potentials as partial derivatives of

entropy with respect to extensive variables

Ij chemical flux or the derivative dnj=dt for jth
reaction

Jj density of chemical flux of jth reaction

k reaction rate constant

l length coordinate

N , n number of reactions and number of species,

respectively

Pj production function of jth reaction

nj degree of advancement for jth reaction

q heat flux

R gas constant

Rj standard volumetric resistance of jth reac-

tion

R total chemical resistance of reaction

rj volumetric rate of jth reaction

S, Sr entropy and entropy production, respectively

T temperature

t time

u controlled slope dy=dx, local direction of

gradient of P
V volume, potential

W moisture

x dryness content in boiling example

x, y horizontal and vertical coordinate, respectively

Greek symbols

a incidence angle between the gradient of P
and normal to plane of constant q

qj specific chemical resistance of jth elemen-

tary reaction

mij stoichiometric matrix of jth reaction

(mij � mbij � mfij)
Ur, Wr rate dependent and state dependent dissi-

pation function, respectively

li molar chemical potential of ith component

Pf , Pb substrate and product part of chemical affinity

Subscripts

i ith component

j elementary reaction number

m minimum

r dissipative property

Superscripts

b backward

f forward

s entropy representation
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this local form the role of temperature is played by the

unidirectional component of chemical affinity whereas

the role of heat conductivity is played by the reciprocal

of specific chemical resistance. This form makes it pos-

sible to formulate the problem of an optimal shape for a

‘‘chemical ray’’ in the physical space by solving a cor-

responding variational problem. The problem represents

a continuous variant of the chemical Fermat principle

with an infinite number of infinitesimal refractions of the

ray, similar to the continuous version the Fermat prin-

ciple in a optically inhomogeneous medium.

For the fluxes of heat mass and chemical flux, a ‘‘law

of bending’’ is determined in suitable reference frames

which implies that––by minimizing the total resistance––

the chemical ray spanned between two given points

takes the shape assuring its relatively large part in a

region of lower chemical resistivity (a �rarer’ region of

the medium). In effect, the chemical flux bends into the

direction that ensures its shape consistent with the

longest residence of a definite charge (of mass, energy or

chemical complex) in regions of lowered resistivity.

To increase simplicity and lucidity of its interpreta-

tion, the principle of path bending is formulated in some
particular frame of coordinates x and y in which the

local resistance for the flow of a stream (of substance or

heat) changes as a function of a distinguished coordinate

x; the coordinate y is then tangent to the surface of the

constant specific resistance q ¼ C. In the analysis of the

problem essential role is played by the slope coefficient

u ¼ dy=dx that describes the local direction of the gra-

dient of an appropriate potential (temperature recipro-

cal, Planck potential, etc.).

Methods of dynamic optimization (variational cal-

culus, maximum principle and dynamic programming)

are applied to quantitatively describe chemical or thermal

flows as orthogonal (transversal) trajectories of corre-

sponding ‘‘wavefronts’’ or surfaces of constant resistance

q ¼ C (constant time in the typical Fermat problems).
2. Thermodynamics of multiphase systems

Let us first recall two basic approaches to thermo-

dynamic modeling of multiphase systems.

In the first approach one assumes that in the investi-

gated system all phases and interphase surfaces are
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known (or we are able to determine them), and, by this,

within each phase and for each interface a separate

analysis can be performed. Such an analysis uses for

each phase methods stemming from thermodynamics of

single-phase systems, and supplements the results ob-

tained by those stemming from analyses of the phe-

nomena occurring at interfaces. Examples of such

approach are usually provided in earlier works [1–3].

Frequently, however, an extremely large number of

phases is present in the system (e.g. in dispersed and

boiling systems), and interfaces may vary in the process.

The matter can also be complicated by phase transfor-

mations and surface reactions. The first approach is then

fruitless.

In the second approach (generally more effective) it is

assumed that the multiphase system constitutes an iso-

tropic mixture that has definite operational properties,

thermodynamic and transport. One deals then with the

model of fluid with microstructure whose thermody-

namic and transport properties are described by such

operational quantities as: operational specific heat, op-

erational first and second viscosity, operational heat

conductivity, etc. Effectiveness of the approach based on

operational quantities was recently shown in series of

works on flow boiling and condensation, see, for ex-

ample [4,5].

In the context of the variational approach, which

may be applied whenever one knows a relevant func-

tional and a variational principle, the idea of minimum

entropy generation can be applied that was originally

exploited in single-phase systems. We can illustrate the

approach of this sort with example of the so-called

flashing, i.e. boiling of expanding water in the nozzle,

where intense evaporation occurs caused by a rapid

pressure drop and the increase of the flow velocity [3].

In thermodynamic descriptions of multiphase, chem-

ically reacting media important role is played by matrices

Rik and gik , that contain operational chemical resistances

and conductances of transport processes. The matrix of

chemical resistances R can be applied to describe both

chemical reactions and phase changes. The state matrix

C ¼ ðc1; . . . ; cn; ce) is the vector composed of molar

concentrations and energy density. The vector of poten-

tials is represented by the column matrix F defined as

F ¼ ð�l1T
�1;�l2T

�1; . . . ;�lnT
�1; T�1ÞT ð1Þ

Classical definition of the chemical affinity [6] is here

transferred to the entropy representation and extended

so that it can take into account transport phenomena.

Both the extension and its classical counterpart are

shown in Eq. (2) below. In the case when transport

processes are absent standard affinity is recovered as

shown by the arrow in the equation below

As
j ¼

Xn
i¼1

ðvbijF b
i � vfijF

f
i Þ !

Xn
i¼1

vijFi ¼ ðvTFÞj ð2Þ
Entropy source in the system describes both transport

and rate processes in terms of net rates rj and differences

in transfer potentials Fi. Matrix R defined by Eq. (3)

below is a nonlinear generalized matrix of chemical re-

sistances, so that its entries refer to the chemical dissi-

pation and dissipation caused by accompanying

transports. Vector r comprises the reaction rates and

rates of transports, and, in the classical case, the product

vT F describes the traditional vector of chemical affinities

in the entropy representation, As. Chemical resistances

satisfy the logarithmic formula [7–10]

Rjða; T Þ ¼ R ln kfj
Yn
i¼1

a
vfij
i

 !"
� ln kbj

Yn
i¼1

a
vbij
i

 !#

kfj
Yn
i¼1

c
vfij
i

",
� kbj

Yn
i¼1

a
vbij
i

#
ð3Þ

where ai are activities. For systems close to ideal ones

use of concentrations, ci is sufficient.
3. Example of boiling as a chemical reaction

We discuss here an equation describing the kinetics of

new phase creation (vapor) during flashing, that is,

boiling of expanding water in a nozzle in which intense

evaporation occurs caused by the large pressure drop

and consistent increase of the velocity. Production of

vapor in the flashing zone and its later disappearance in

the ‘‘shock wave’’ are described by a relaxation–diffu-

sion model [5].

Assuming that the disequilibrium caused by the cre-

ation of vapor bubbles is defined as the difference in the

dryness fraction xe � x, the vapor production can be

treated as a chemical reaction described by the resistance

equation (a special case of the general resistance (3))

RðxÞ ¼ R
ln½kfð1� xÞ=ðkbxÞ�
kfð1� xÞ � kbx

ð4Þ

and by the chemical affinity of vapor creation (in en-

tropy representation). In terms of the dryness fraction x,
the increase of which per unit time dx=dt represents the
net rate of the vapor generation r, we obtain the affinity

A ¼ ðl=T Þf � ðl=T Þb ¼ R ln
rf

rb

� �
ffi R ln½kfð1� xÞ=ðkbxÞ� ð5Þ

The affinity of inverse process, i.e. condensation, equals

�A. Then the chemical Ohm law

dx
dt

¼ rf � rb ¼ A
R

ð6Þ



j

–∆j  ∆F = J X

j = j

F
X =
∆F

J =
– ∆j

↑

↑

Fig. 1. Ol�aah’s interpretation of net fluxes J and classical driving

forces X (http://knight.kit.bme.hu/olah/olah-06.htm).
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[7–10] implies the kinetic equation

dx
dt

¼ kfð1� xÞ � kbx ð7Þ

Equilibrium dryness fraction (for r ¼ 0) satisfies the

equation

kf ¼ ðkf þ kbÞxe ð8Þ

so that the equilibrium dryness fraction of vapor is

xe ¼ kf=ðkf þ kbÞ ð9Þ

After applying the equilibrium dryness fraction in Eq.

(7) the kinetics of vapor generation becomes described

by the equation

r ¼ dx
dt

¼ ðkf þ kbÞðxe � xÞ ð10Þ

This is, of course, a familiar relaxation equation with the

transfer coefficient K ¼ kf þ kb and relaxation time

s ¼ K�1. This equation proves that the process of vapor

production in the flashing regime may be described as a

chemical reaction with the chemical affinity (5) and the

chemical resistance (4).

Regarding experimental corraboration of Eq. (10)

and determining of the relaxation time s, see, for ex-

ample, [5]. The discussed kinetics is in general neither

isothermal nor isobaric because the rate constants kf and
kb can be referred to two different temperatures that

depend in a given instant on the process course. If the

variables used to describe relaxation are, e.g., x, p and s,
then the difference xe � x may be presented as the linear

combination of the differences ðxe � xÞs;p, ðpe � pÞs;x and
ðse � sÞp;x multiplied by related coefficients. This is con-

sistent with the general structure of the relaxation

equations for processes of this sort [4,5].

The approach that applies resistance (3) in the par-

ticular form (4) provides therefore a way to describe the

flashing process as interphase chemical reaction. In the

regimes of flashing and condensation, i.e. where sources

of new phase are important, the fluid model (which

elsewhere may be that of an perfect fluid) is necessarily a

model of a viscous fluid that conducts the heat. It is also

the model of the fluid with microstructure, in fact, a new

phase, where the transfer processes are described via

operational coefficients of viscosity and heat conduc-

tivity. Yet, a true difficulty in this example consists in the

derivation of a complete set of kinetic and balance

equations, along with equations describing pressure,

velocity field, and various modes of momentum trans-

port. This, in fact, could be broken down to variational

derivation of the equation of change for momentum

(Navier–Stokes equation). Equations of motions are in

this case inevitable if we do not want to distort our

modeling far beyond an admissible accuracy.
4. Introduction to nonlinear models of thermokinetics

Below we discuss main problems of nonlinear dis-

equilibrium systems focusing on applications to chemi-

cal or electrochemical processes and coupled heat and

mass transfer. We concentrate our discussion on several

general aspects of the nonlinear theory which are in di-

rect connection with nonequilibrium thermodynamics

and occasionally stress some other applications that may

have a practical utility for various process techniques.

In particular, on the example of Marcelin–de Donder

kinetic equations, we introduce a ‘‘thermokinetic anal-

ysis’’ and discuss its link with engineering descriptions of

processes analyzed as single-phase- and pseudo-homo-

geneous multiphase systems. We next show that a criti-

cal analysis of the literature equations leads to amended

structures that have secured the uniqueness of condi-

tions describing chemical and thermodynamic equilibria

and satisfy the Onsager’s symmetries for small driving

forces [11]. We point out that in the conventional de-

scription of irreversible processes considered are net

fluxes and net thermodynamic forces (Fig. 1). Tradi-

tional rate equations and exchange equations are pos-

tulated as relationships of the following type

J ¼ f ðXÞ J � �Dj; X � DF

In the Onsager theory Ji ¼ RkLikXk , where Lik is a re-

spective phenomenological coefficient that has the

meaning of a conductance. In many cases, especially for

situations far from equilibrium this type of the rate

formulas is not unique.

Thermokinetics is capable of describing nonlinear

processes with the transport of energy and substance in

the bulks of phases or at interfaces, the rates of these

processes being described by models of chemical reac-

tions. By analyzing two competing directions of an ele-

mentary process as a direct and reverse reaction

thermodynamic disequilibrium systems are investigated

that are described by generalized equations of Marcelin–

de Donder type [12–17]. These equations contain expo-
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nential terms with Planck potentials and temperature

reciprocal, and they simultaneously are analytical ex-

pressions characterizing the transfer of substance or

energy through the energy barrier [18]. Similar equations

were used by de Vos in his analysis of currents of pho-

tons and electrons in semiconductors as elements of

solar cells [19].

As shown here and in some other sources, kinetics of

this sort are consistent with the mass action law [20], and

have far-reaching consequences to distinguish between

processes close and far from the thermodynamic equi-

librium. With these kinetics one can also determine

thermodynamic and kinetic criteria for correctness of

many approximate kinetic equations used in the litera-

ture. We stress a common for various systems method-

ology based on Gibbs equation and principles of

thermodynamics of irreversible processes [6,21]).

A process of new phase creation, during evaporation

for example, may be understood either as the usual

phase change

Wg ¼ Wl ð11Þ

or as a special chemical reaction (with the stoichiometric

coefficient mf ¼ 1 for the substance in the liquid state and

the coefficient mb ¼ 1 for this substance in the gaseous

state). In this reaction the product is the mass (or mole

number) transferred from the liquid to the gas, and the

conversion degree is the quantity of the evaporated liq-

uid per unit mass of the system. The driving force of

such a chemical reaction is its �affinity’, A ¼ ls � lg, or

its nonisothermal generalization A ¼ ls=Ts � lg=Tg.
Approximate kinetic models of linear irreversible

thermodynamics hold true in the regime of linear pro-

portionality between thermodynamic fluxes and forces.

In this regime these models conform with the experi-

mentally confirmed observation that in the regime close

to equilibrium the reaction rate or the rate of phase

change is proportional to the chemical affinity. This

observation is sometimes applied in various process

techniques, in approaches when the physical transfor-

mation (e.g. evaporation) is treated as a special reaction

(as in the example discussed above). In the process

thermodynamics a conclusion can then be formulated

that knowledge of the affinity A suffices to predict the

process rate. However, the use of the affinity A for the

purpose of the unique determination of the rate is ad-

missible only in a strictly linear regime located in close

vicinity of the equilibrium manifold. This means that the

results obtained with the help of linear models became

too approximate (and hence unacceptable) in regimes of

state changes where nonlinear properties are essential. In

particular, the simple conclusion that allows to apply the

affinity A as the single variable sufficient to describe the

process rate is no longer valid. In fact, applicability of

approximations based on linear models is often doubtful

in the realm of experiments, both in chemical and
physical kinetics. The need for a nonlinear theory is

obvious when one wants to describe process rates in a

more exact way.
5. Kinetics of Marcelin–de Donder

The Marcelin–de Donder kinetic scheme represents

the first and already important example of the structure

that appears in general equations of thermokinetics.

This kinetic scheme represents a form of the kinetic mass

action law in which chemical potentials appear instead

concentrations. To derive the Marcelin–de Donder form

of the kinetic law of mass action we consider the general

chemical reaction

Xn
i¼1

vfijAi $
Xn
i¼1

vbijAi i ¼ 1; 2; . . . ; n and

j ¼ 1; 2; . . .N ð12Þ

satisfying the classical mass action law in the form

rj ¼ rfj � rbj ¼ kfj ðT Þ
Yn
i¼1

c
vfij
i � kbj ðT Þ

Yn
i¼1

c
vbij
i ð13Þ

Exploiting the usual structure of chemical potentials

liðci; T Þ ¼ li0ðT Þ þ RT ln ci ð14Þ

the concentrations ci can be obtained in the form

ci ¼ exp
li

RT

� �
exp

�
� li0

RT

�
ð15Þ

Substituting Eq. (15) into (13) we obtain the rate equa-

tion in the Marcelin–de Donder form

rjðc; T Þ ¼ rfjðc; T Þ � rbj ðc; T Þ

¼ r0j ðT Þ exp
Xn
i¼1

vfij
li

RT

 
� exp

Xn
i¼1

vbij
li

RT

!
ð16Þ

that already has the typical (while still not the most

general) structure of equations of thermokinetics. Its

virtue is a single reaction rate constant, r0j , which rep-

resents the so-called exchange current (Its electrochemi-

cal counterpart is interpretted in Figs. 2 and 3.). Another

virtue of this structure is explicit satisfaction of the de-

tailed balance at the thermodynamic equilibrium. In

ionic systems chemical potentials in the above equations

should be replaced by electrochemical potentials. The

exchange current expressed in terms of ‘‘usual’’ reaction

rate constants has the form

r0j ðT Þ � kfj ðc; T Þ exp
Xn
i¼1

 
� vfij

li0

RT

!

¼ kbj ðc; T Þ exp
Xn
i¼1

 
� vbij

li0

RT

!
ð17Þ



j j
cathodic anodic

Current

Equilibrium Voltage

Fig. 2. Ol�aah’s interpretation of anodic and cathodic currents as

well as of the exchange current in terms of voltage. Abscissa of

crossing point of both currents describes the exchange current.

Electrochemical potential

Equilibrium

log j       log jand

log j0

Fig. 3. Ol�aah’s interpretation of logarithms of anodic and ca-

thodic currents as well as of the exchange current in terms of

electrochemical potential.
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The quantity r0j is well known in electrochemistry. We

observe that it is just the condition of vanishing elect-

rochemical affinity that implies the necessity of equality

of both right hand sides of Eq. (17). More precisely, the

common value of r0j for the forward and backward re-

action follows as the consequence of the fact that in

order to assure the vanishing chemical (electrochemical)

affinity at equilibrium both expressions in Eq. (17) must

be equal at every instant of time. This allows to define

the universal reaction rate constant r0j or the exchange

current in electrochemistry (Electrochemical rates are

designated by the letter j rather than c in Figs. 1–3.).

Moreover, in order to treat electrochemical systems

correctly, the chemical potentials in the above equations

should be replaced by the electrochemical potentials.

The result is the Butler–Volmer equation that de-

scribes the electric current as difference of anodic and

cathodic currents [22]. In terms of the electrochemical

rather than chemical potentials (the former are desig-

nated by tildas) and the net electric current J as the

difference between the anodic and cathodic currents the

Butler–Volmer equation has the form

J ¼ janodðc; T Þ � jcathodðc; T Þ

¼ j0ðT Þ exp
Xn
i¼1

vfi
~lli

RT

 
� exp

Xn
i¼1

vbi
~lli

RT

!
ð18Þ

Popular, equivalent form of this equation describes the

electric current of a cell in terms of the overvoltage g and
Faraday constant F

J ¼ j0ðexpðð1� aÞF g=RT Þ � expð�aF g=RT ÞÞ ð19Þ

[22]. In the literature more information on electrode

thermokinetics can be found, see, for example [16,22].

According to Ol�aah [16] one may distinguish the three

basic stages in the development of the theories of elec-

trode processes. In the first step Tafel observed in 1905

that some electrochemical processes undergo at a sub-

stantially different voltage than it would be expected

from thermodynamic calculations, i.e. the overpotential

was discovered. In 1930 Erdey-Gruz and Volmer made a
substantial progress in interpreting experiments. The

theory developed by them can be regarded as the be-

ginning of the modern thermokinetic theory used now-

adays [15–17]). The basic statements of the

contemporary interpretation are: (a) The current mea-

sured by the ammeter in series with the cell is actually a

‘‘net’’ current, or the difference of two opposite ‘‘abso-

lute’’ currents (the anodic current and the cathodic

current); (b) At equilibrium the absolute unidirectional

currents equalize but do not vanish; they define the

‘‘exchange currents’’; (c) The absolute currents are ex-

ponential functions of the voltage; (d.) The voltage-de-

pendences of the anodic and cathodic currents, differ one

from another. This is presented in a lucid way in Ol�aah
graphs that may be found on his website: http://

knight.kit.bme.hu/olah/olah-10.htm/.
6. General equations of nonlinear thermokinetics

We shall now discuss generalizations of the above

kinetic schemes. The general equations of thermokinet-

ics are formulated for a set of chemical reactions,

j ¼ 1; 2; . . . ;N

Xn
i¼1

vfijA
f
i $

Xn
i¼1

vbijA
b
i ð20Þ

between the species i ¼ 1; 2; . . . ; n and also for the trans-

port (diffusion) processes involving the same species.

Both groups of processes are described by in principle the

same basic equations of nonlinear thermokinetics; the

differences appear when stoichiometric coefficients are

treated, which are equal on both sides of the energy

barrier in the case of transport processes.

For an undirectional elementary process in the for-

ward direction

rfj ¼ r0j exp

 
�
X
i

mfjiF
f
i

!
j ¼ 1; 2; . . . ;N ð21Þ

http://knight.kit.bme.hu/olah/olah-10.htm
http://knight.kit.bme.hu/olah/olah-10.htm
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and the same structure holds for the backward process

with only the difference in indices. As there are two

competing processes, direct and reverse (or forward and

backward), the net process rate is

rj ¼ rfj � rbj

¼ r0j exp

  
�
X
i

mfjiF
f
i

!
� exp

 
�
X
i

mbjiF
b
i

!!

ð22Þ

In these equations Fi are the potentials ð1=T ;�li=T Þ or
the partial derivatives of the entropy with respect to the

extensive quantities in the Gibbs equation. In the kinetic

regime (fast transports, F f
i ¼ F b

i ¼ F eq
i ) one recovers the

classical chemical kinetics in the Marcelin–de Donder

form (16), whereas in the diffusion-controlled regime

(fast reactions) the process behalves in accordance with

the laws of nonlinear diffusion.

Eq. (23) below, based on (22), makes it possible to

treat the diffusion of the energy and components, thus, it

represents a generalization of the isothermal kinetics of

the Marcelin–de Donder (16). The generalized formula

(23) is no longer restricted to the kinetic regime as its

original counterpart (16)

rjðc; T Þ ¼ r0j ðT Þ exp
Xn
i¼0

vfij
lf
i

RT f

 
� exp

Xn
i¼0

vbij
lb
i

RT b

!

ð23Þ

(li � 1 for i ¼ 0, corresponding with the energy trans-

fer.) The general relationship (22) is thus capable of in-

cluding slow transport processes and nonisothermal

effects. Due to the presence of the potentials of the same

component in both terms of Eq. (23), which means the

component presence at both sides of the barrier, auto-

catalytic effects can be investigated.

In the considerations that follow we use the nondi-

mensional affinities of the entropy representation, Aj.

For an isothermal energy barrier these are connected

with the classical affinities by the equation

Aj � Aclass
j =ðRT Þ ð24Þ

The stoichiometric coefficients satisfy the constraint re-

sulting from the mass conservation law in each chemical

reactionX
i

ðmbji � mfjiÞMi ¼
X
i

mjiMi ¼ 0 ð25Þ

In the case of elementary transport processes, the gen-

eral reacting scheme (20) assumes a simple form.

Namely, for each ith transported component separately

vfi B
f
i $ vbi B

b
i i ¼ 1; 2; . . . ; n ð26Þ

However a more general form with mki can also emerge,

associated with Onsagerian couplings and correspond-

ing symmetries in the system. The mass conservation
equation (25) constitutes an essential constraint for the

stoichiometric coefficients; its neglect may lead to erro-

neous results. For the transport processes the mass

conservation requires that in each elementary process

both stoichiometric coefficients are equal

mbki ¼ mfki � m�ki ð27Þ

Nonlinear kinetic equation in the slow diffusion regime

rk ¼ rfk � rbk

¼ r0k exp

  
�
X
i

m�kiF
f
i

!
� exp

 
�
X
i

m�kiF
b
i

!!

ð28Þ

applies the condition (27), which, allegedly as the general

one, is sometimes transferred to the realm of chemical

reactions. However the equality (27) is inapplicable to

genuine chemical reactions; it is valid only to transport

processes. Its existence would assure the identical van-

ishing of the chemical affinity, which would imply that

the unique equilibrium state cannot be achieved for the

chemical equilibrium.

When the process undergoes closely to the equilib-

rium one can expand the general equation (22) in Taylor

series and restrict to the first order deviations of the

expansion. This yields

rj ffi reqj
X
i

ðmbjiF b
i � mfjiF

f
i Þ ð29Þ

where the current reqj satisfies Eq. (21) at the equilibrium

and is the same for both directions.

Thus, in the close vicinity of the equilibrium the re-

action rate is proportional to the extended or nonclas-

sical affinity Aj. When, additionally, diffusion processes

are fast (reactions undergo in the kinetic regime) each

reaction rate is proportional to its standard (classical)

affinity

rj ffi reqj
X
i

ðmbji � mfjiÞF �
i ¼ reqj

X
i

mjiF �
i ¼ reqj A�

j ð30Þ

This shows that closely to equilibrium each reaction rate

is uniquely defined by the corresponding affinity of the

reaction (which is the classical affinity in the kinetic re-

gime). In general, however, a supposition that in any

thermodynamic region the reaction rate rj can uniquely

be linked with the chemical affinity Aj by a formula of

the type r ¼ f ðAÞ is false. This rate depends on tem-

perature and all concentrations, and, therefore the for-

muła r ¼ f ðAÞ [similarly as J ¼ fðXÞ] is not unique in the

general case.
7. Nonlinear coupled transport of mass and heat

Applying models of nonlinear thermokinetics we

shall now consider coupled transfer of mass (m) and heat
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(h). This process is described by Eq. (28), that contains

two expressions. The first one describes the mass flux of

an active component (e.g. moisture)

r1 ¼ r01 exp m�11
lm

RT

� �f" 
þ m�12

�
� 1

RT

�f
#

� exp m�11
lm

RT

� �b"
þ m�12

�
� 1

RT

�b
#!

ð31Þ

and the second one––the heat flux q ¼ r2

r2 ¼ r02 exp m�21
lm

RT

� �f" 
þ m�22

�
� 1

RT

�f
#

� exp m�21
lm

RT

� �b"
þ m�22

�
� 1

RT

�b
#!

ð32Þ

Let us determine conditions thatmust be satisfied in order

to assure the Onsager symmetries in the above kinetic

equations. Expanding both kinetic expressions in the

Taylor series and assuming small driving forces we obtain

r1 ¼ req1 m�11
lm

RT

� �f� 
� lm

RT

� �b�

þ m�12

�"
� 1

RT

�f

�
�
� 1

RT

�b
#!

ð33Þ

r2 ¼ req2 m�21
lm

RT

� �f� 
� lm

RT

� �b�

þ m�22

�"
� 1

RT

�f

�
�
� 1

RT

�b
#!

ð34Þ

These equations prove that for a symmetric matrix m�ki
both equilibrium currents req1 and req2 must be identical,

so they must be replaced by a certain universal constant,

req. If, however, is usual, the discussed matrix is not

symmetric then the requirement of Onsagerian symme-

tries imposes appropriate connections between the cur-

rents req1 and req2 . When memory terms are introduced

into the above equations by applying a general approach

[23], then these equations can be generalized for pro-

cesses with finite propagation speeds of signals.
8. Description of reaction rates by a field method applied

to a continuum

In considerations describing the motion through the

energy barrier the notion of chemical conductance is

useful. It is the reciprocal of the standard chemical re-

sistance Rj

Kjða; T Þ � R�1
j ða; T Þ ¼ 1

R

rfj � rbj
lnðrf=rbÞ ð35Þ
j j
This formula shows that the chemical conductance is

measured by the value of the logarithmic mean of both

unidirectional rates. When the one of these rates is close

to the other, which takes place in the vicinity of the state

of equilibrium, the conductance Kj may be approxi-

mated by the expression

Kjða; T Þ ffi
1

2R
ðrfj þ rbj Þ ffi

reqj
R

ð36Þ

In terms of Kj the chemical Ohm’s law that defines the

resulting rate of an elementary process has, of course,

the form rj ¼ KjAj where the extended affinity of the

entropy representation has the form

As
j ¼

Xn
i¼1

ðvbijF b
i � vfijF

f
i Þ ð37Þ

The relationship rj ¼ KjAj is an analogue of the New-

ton–Fourier law, q ¼ aDT ¼ aðT f � T bÞ, which is well

known formula for the heat exchange. The latter is the

result of integration of the local Fourier law,

q ¼ �jgradT , between limits corresponding to a finite

difference of temperatures T f and T b. This observation

leads to the supposition that the chemical Ohm’s law

rj ¼ KjAj may be regarded as a result of the integration

of the following vector relationship

Jj ¼ �kjgradPj � kjgrad
Xn
i¼1

ðQijFiÞ
( )

ð38Þ

along the gradient direction. In the above equation the

quantities Pj defined as

Pj � �
Xn
i¼1

ðQijFiÞ ð39Þ

are called potentials of the reaction j. Let us note that

these potentials have the structure of unidirectional

components of the chemical affinity. The chemical

Ohm’s law rj ¼ KjAj can be recovered from the vector

rate formuła (38) by its integration for potentials Pj

between the limits Pf
j and Pb

j . In the rate equation (38),

instead of unidirectional stoichiometric coefficients mfij
and mbij referred to both sides of the energy barrier stoi-

chiometric variables Qij appear (also unidirectional)

satisfying the boundary conditions Qf
ij ¼ mfij and

Qb
ij ¼ mbij. Let us stress that the introduced approach re-

quires not only the integration with respect to the orig-

inal potentials Fi, that change in the limits between F f
i

and F b
i , but also taking into account changes of stoi-

chiometric functions Qij between Qf
ij ¼ mfij and Qb

ij ¼ mbij.
This approach is reached than the traditional one as it

considers properties of the chemical vector (not a scalar)

to characterize rates of a definite reaction j in the

physical space.

For the reaction j, we now introduce the molar

chemical flux of this reaction, Ij ¼ dnjprod=dt ¼ V nj=
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Fig. 4. Illustration of Fermat-type principle of minimum time

for a chemical reaction. The chemical motion occurs between

two regions with different specific chemical resistances q1 and

q2. The path in the coordinates x and y highlights ‘‘a chemical

ray’’. The area A0 tangent to the surface separating two regions

of constant q (e.g. interface) is a system constant, thus the

vertical cross-sections 1 and 2 have a common area A0. Yet, the

areas Ai ði ¼ 1; 2Þ perpendicular to the chemical flux decrease

with angles ai and are equal A0 cos ai.

S. Sieniutycz / International Journal of Heat and Mass Transfer 47 (2004) 515–526 523
dt ðdnj ¼ dnjprod=V Þ, and the density of this flux Jj as the
(concentration-based) degree of advancement of the re-

action nj referred to the surface A in the unit time. For

the reaction at a constant volume the reaction rate rj
satisfies the usual formula rj ¼ dnj=dt. In the one-

dimensional case one may write rj ¼ ðAV �1Þdnjprod=Adt,
whence

rj ¼ Ij=V ¼ ðA=V ÞJj ¼ ðA=V ÞðJ f
j � J f

j Þ ð40Þ

where Jj is the resulting (net) density of the chemical flux

equal to the difference of the absolute values of the

density vector Jj in states f and b.The relationships be-

tween the chemical vector Jj, scalar rj and (concentra-

tion-based) degree of advancement nj are defined by

Eqs. (41) and (42) below, in which a remarkable role is

played by the production vector of jth reaction, Pj. The

chemical vector Jj is defined by the equations

Jj ¼
dPj

dt
ð41Þ

nj ¼ r � Pj ð42Þ

The first one explains the name of the vector Pj, whereas

the second connects it with the degree of the reaction

advancement, nj ¼ njprod=V . Acting on the first equation

with the difference operator and using the second

equation one concludes that the scalar rate of the reac-

tion rj ¼ dnj=dt is just the divergence of the vectorial

rate

r:Jj ¼
dnj
dt

¼ rj ð43Þ

(This result can also be obtained after determining the

derivative dnj=dt of the second equation and using the

first one.) Let us observe, that the integration of both

sides of this equation over the volume and making use of

the Gauss theorem yields in the one-dimensional case

and for a ‘‘narrow barrier’’

rj ¼ ðJ f
j � J f

j ÞA=V ¼ rfj � rbj ð44Þ

This result is consistent with Eq. (40). It expresses the

difference of unidirectional fluxes rf and rb in terms of

the change in normal components of the chemical vector

Jj, and it proves that for simple boundary conditions,

corresponding with one-dimensional motion through

the barrier, the previous (thermokinetic) description

based on two competing fluxes is recovered. The field

description using the chemical vector Jjðx; tÞ facilitates

to follow the chemical changes, similarly as the field

description applying the well known heat flux vector

qðx; tÞ is useful to observe thermal changes.

Consequently the law of chemical motion can be

written in the local form (38) resembling the Fourier

law, in which the role of temperature is played by the

unidirectional component of the chemical affinity and
the reciprocal of specific chemical resistance, Kj, plays

the role of the heat conductivity. In comparison with the

previous approaches considered here, including therm-

okinetics, we are faced with reorientation, because now

the chemical reaction is treated as a transport problem

in which the chemical vector Jjðx; tÞ is a suitable entity.

This approach searches for detailed properties of the

motion through the energy barrier by formulating a

variational problem of an optimal shape for a ‘‘chemical

ray’’ in the physical space, and by solving this problem.

In fact, the approach describes a continuous variant of

the chemical Fermat principle with an infinite number of

infinitesimal refractions of the ray. This is similar to the

continuous version of the Fermat problem in an optically

(or thermally) inhomogeneous medium. The thermally

inhomogeneous media have been investigated by this

technique in earlier works [24,25].

To expose the kinematic properties of the chemical

vector we now present the ‘‘law of bending’’ (Fig. 4)

which implies that––by minimizing the total resistance––

the chemical ray spanned between two given points

takes the shape assuring its relatively large part in a

region of lower chemical resistivity (a �rarer’ region of

the medium). In effect, the chemical flux bends into the

direction that ensures its shape consistent with the

longest residence of the chemical complex in regions of

lower resistivity. This local principle is here the leading

idea to handle highly nonlinear systems. As Eq. (44)

holds for a narrow barrier, the local principle recovers

previous results in the case of constant specific resis-

tances; on the other hand it is still capable of handling

situations in which local properties (including the spe-

cific chemical resistance qj) change along the path in a

complicated way.

For conserved fluxes the minimum of entropy pro-

duction is valid that can be associated with the minimum
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resistance of the path. Taking this into account it follows

that the minimum resistivity at a given flux causes––in

the dual picture of the problem––the maximum of flux

through the medium along a given path (of a prescribed

resistance), which ensures that the residence time of the

flux-related charge or reaction complex in the medium is

as short as possible. This makes the principle for travel

of physical or chemical entities quite similar to that for

propagation of light. Our task is to investigate these

phenomena by the optimization methods, in particular

by variational calculus and dynamic programming.

With the help of the specific chemical resistance qj of

a definite reaction, one defines the differential of the

total resistance of the path Rj

dRj � qj
dl
A

ð45Þ

The total resistance is the path integral over this expres-

sion. Similarly like the electrical resistance the quantity

Rj increases with the total length l and decreases with the

cross-sectional area perpendicular to the path A. The

chemical Ohm’s law for the jth reaction characterized by

a constant specific resistance qj and flux Ij of the chemical

vector Jj through the area A has the form

Ij ¼ R�1
j ðPf

j �Pb
j Þ ð46Þ

It defines the flux Ij through the surface A as the ratio of

the potential difference Pf
j �Pb

j and total resistance Rj.

Yet, Eq. (46) is exact only for a constant specific resis-

tance qj which is too special case for the equation to be

frequently useful. In fact, the essential role of the vari-

able quantity qj is to replace the physically insufficient

(or even artificial) theory based on the integral R of Eq.

(46) and rough global Eq. (46) by the local formula (38)

and a variational principle for a minimum of the total

resistance Rj.

In the accepted reference frame the local resistance

for the jth chemical flow, qj, changes along the axis x.
The axis y is tangent to a surface of constant resistivity

q¼ constant. The slope u ¼ dy=dx conforms with the

local direction of gradient of the Planck potential

function, Pq �
Pn

i¼1 miqli=T , that changes in the course

of the reaction F () B between Pf
q ¼

P
mfiqli=T and

Pb
q ¼

P
mbiqli=T . Clearly, symbols Pf and Pb respec-

tively refer to the substrate and product part of the

chemical affinity in the entropy representation. In a

special case of single reversible reaction F () B the

function in question is the Planck potential itself,

Pq � lT�1, that changes between lFT
�1 and lBT

�1. In

the chosen reference frame the vector of the gradient of

Pq (or lT�1) lies in the plane x–y, and the surfaces of

constant specific resistance are represented by the lines

x¼ constant (Fig. 4). In these conditions the local di-

rection of the chemical vector I for the reaction F$B is

uniquely determined by the gradient of the Planck
function Pj �
P

mijli=T (Planck potential lT�1 in the

simplest case of the single reversible reaction).

Chemical Ohm’s law associated with the approximate

theory based on the integral resistance Rj and approxi-

mate (global) equation (46) is now replaced by the local

formula (consistent with Eq. (38))

Ij � V
dnj
dt

¼ JjA ¼ �AgradPj

qj
¼ �AdPj

qjdl
¼ � dPj

dRj

ð47Þ

that admits local variability of the specific resistance qj

along the reaction path. Using this formula and the

variational principle for minimum total resistance Rj we

shall derive the continuous (field) counterpart of the

Fermat law in the form of the bending law for chemical

flux, associated with variable qj in formula (47).

In both the discrete and continuous problems

A ¼ A0 cos a where A0 is the constant (x-independent)
area of the conserved flux tubes intercepted by the in-

terface or any surface of constant qj (Fig. 4), whereas the

incidence angle varies with x according to the formula

cos a ¼ dx
dl

¼ dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p ð48Þ

or cos a ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u2

p
Þ�1

. In the above equations a is the

angle between the gradient of P (or the chemical ray)

and a normal to the planes of constant resistivity. Eqs.

(47) and (48) then imply the formulation which describes

the vanishing variation for the functional of total resis-

tance defined as

R1;2 �
Z t2

t1

qðxÞA�1
0

ðdx2 þ dy2Þ
dx2

dx

¼
Z x2

x1

qðxÞA�1
0 ð1þ ðdy=dxÞ2Þdx ð49Þ

In this functional A0 is the constant area of projection of

the cross-sectional area of the flow tube on the surface of

constant resistivity; its constancy is related to the con-

served property of the flow. The vanishing variation of

resistance is associated with the minimum of the func-

tional (49). Eq. (49) is optimized with respect to the

control u ¼ dy=dx within each infinitesimal layer dx.
Dynamic programming is a general method to set a

numerical procedure of optimization [26,27]. The pro-

cedure solves the problem of exact determining of

chemical wavefronts and chemical rates. The minimum

resistance function defined as

Rmðxi; yi; xf ; yfÞ � min

Z xf

xi
A�1
0 qðxÞð1þ u2Þdx ð50Þ

satisfies the Hamilton–Jacobi–Bellman equation (HJB

equation) of the problem
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oRm

ox
þmax

u

oRm

oy
u

�
� A�1

0 qðxÞð1þ u2Þ
	

¼ 0 ð51Þ

Extremizing the Hamiltonian bracket in the above

equation yields as an optimal control

u ¼ A0

2qðxÞ
oRm

oy
ð52Þ

This optimality condition holds for the chemical flow at

each point; it is written below in the form of the tangent

law of bending for a chemical ray

qðxÞdy
dx

¼ A0

2

oRm

oy
� c; ð53Þ

where c is a constant which may be both positive or

negative. The constancy of oR=oy follows from an ex-

plicit independence of the chemical Lagrangian with

respect to y. Fig. 5 illustrates the cumulative increase of

total minimum resistance along the reaction coordinate.
9. Conclusions

The requirement for the chemical (electrochemical)

affinity to vanish at equilibrium at every instant of time

allows one to define the universal reaction rate constant

r0j which constitutes the exchange current of chemical

and electrochemical processes. In order to treat elect-

rochemical systems it is sufficient to replace chemical

potentials in the Marcelin–de Donder kinetic expres-

sions by electrochemical potentials. The results are

nonlinear equations of thermokinetics including, in

particular, the Butler–Volmer equation, which is the

basic equation of electrochemical kinetics. Applications
using the notion of chemical resistances extended to

electrochemical systems are remarkable.

General schemes of thermokinetics include to the

common model transport effects, in particular, heat

transfer. Critical analysis of the literature schemes shows

the essential role of constraints following from the mass

balance, sometimes ignored in the literature. It also

shows the substantial role of nonvanishing differences

between unidirectional stoichiometric coefficients for the

unique determining of the chemical equilibria.

In spite of the progress represented by the nonlinear

termokinetics theory, description of kinetics remains still

global, involving finite regions in the physical space and

finite driving forces. To describe the chemical transfor-

mation as a motion through the energy barrier treated as

a continuum an effort was made to replace the loga-

rithmic chemical resistance (a mean quantity associated

with a finite affinity or driving force) by its local coun-

terpart. The result is a continuous description, governed

by a principle of the Fermat type with an infinite number

of infinitesimal refractions of the ray, similar to con-

tinuous version of classical Fermat problem in an opti-

cally inhomogeneous medium. By considering the case

when the chemical resistivity increases with x (the me-

dium becoming ‘‘denser’’ with x) one shows that the

slope of the chemical ray decreases with x, thus turning
toward the direction of the resistivity gradient. In fact,

by minimizing total resistance, the chemical ray spanned

between two given points takes the shape that assures

that its relatively large part resides in the �rarer’ region of

the medium. In other words, the path of chemical

complex bends into a direction that ensures its shape

associated with longest residence time in regions of

lower resistivity. This property makes one possible to
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predict shapes of chemical rays. This also leads to de-

scription of the chemical flows in terms of wavefronts

and corresponding Hamilton–Jacobi theory which is

derived from a sequential optimization algorithm by the

dynamic programming method
Acknowledgement

The authors acknowledge the financial support from

the Warsaw TU grant Dynamics of Complex Systems in

2003 (stage II of the project).
References

[1] G. Standard, The mass, momentum and energy equations

for heterogeneous flow systems, Chem. Eng. Sci. 19 (1964)

227–236.

[2] J. Slattery, Interfacial Transport Phenomena, Springer,

Berlin, 1992.

[3] S. Sieniutycz, Nonequilibrium thermodynamics for multi-

phase reacting systems, in: Proceedings of 3rd Int. Sym-

posium: Catalysis in Multiphase Reactors, 29–31 May

2000, Naples, Italy, AIDIC, 2000, pp. 351–358.

[4] Z. Bilicki, Thermodynamic nonequilibrium in the two-

phase system––a continuum with an internal structure,

Archiv. Thermodyn. 17 (1/2) (1996) 109–134.

[5] J. Badur, Z. Bilicki, R. Kwidzi�nnski, Operacyjna Lepko�ss�cc

Objezto�ssciowa w Procesie Transportu Pezdu Ekspandujazcej
Wody i Uderzeniowej Kondensacji Pary Wodnej, Zeszyty

Naukowe IMP PAN, Gda�nnsk, 1997.

[6] I. Prigogine, Thermodynamics of Irreversible Processes,

Interscience, New York, 1959.

[7] H. Grabert, P. H€aanggi, I. Oppenheim, Fluctuations in

reversible chemical reactions, Physica 117A (1983) 300–316.

[8] J.S. Shiner, Algebraic symmetry in chemical reaction

systems at stationary states arbitrarily far from equili-

brium, J. Chem. Phys. 87 (1987) 1089–1094.

[9] S. Sieniutycz, From a least action principle to mass action

law and extended affinity, Chem. Eng. Sci. 42 (1987) 2697–

2711.
[10] S. Sieniutycz, Variational thermomechanical processes and

chemical reactions in distributed systems, Int. J. Heat Mass

Transfer 40 (1997) 3467–3485.

[11] L. Onsager, Reciprocal relations in irreversible processes. I,

Phys. Rev. 37 (1931) 405–426;

L. Onsager, Reciprocal relations in irreversible processes.

II, Phys. Rev. 38 (1931) 2265–2279.

[12] S. Lengyel, I. Gyarmati, Constitutive equations and

reciprocity relations of nonideal homogeneous closed

chemical systems, Acta Chem. Hung. 122 (1986) 7–17.

[13] J. Keizer, Statistical Thermodynamics of Nonequilibrium

Processes, Springer, New York, 1987.

[14] S. Lengyel, Deduction of the Guldberg–Waage mass action

law from Gyarmai’s governing principle of dissipative

processes, J. Chem. Phys. 88 (1988) 1617–1621.

[15] K. Ol�aah, The way to thermokinetics, ACH––Models

Chem. 134 (1997) 343–367.

[16] K. Ol�aah, Electrode thermokinetics, Period. Polytech.

Chem. Eng. 41 (1997) 97–114.

[17] K.Ol�aah,Reciprocityrelations:Maxwell,Onsager.Athermo-

kinetic approach, Period. Polytech. Chem. Eng. 42 (1998)

21–32.

[18] S. Glasstone, K. Leidler, H. Eyring, The Theory of Rate

Processes, McGraw-Hill, New York, 1941.

[19] A. de Vos, Endoreversible Thermodynamics of Solar

Energy Conversion, Clarendon Press, Oxford, 1992.

[20] C.M. Guldberg, P. Waage, Etudes Sur Les Affinit�ees

Chimiques, Brogger and Christie, Christiana, 1867.

[21] S.R. de Groot, P. Mazur, Nonequilibrium Thermodynam-

ics, Dover, New York, 1984.

[22] J.O’M Bockriss, D.M. Drazic, D.M. Electrochemical

Science, Taylor and Francis, London, 1972.

[23] I.M. Shter, The generalized Onsager principle and its

application, Inzh. Fiz. Zh. 25 (1973) 736–742.

[24] A. Tan, L.R. Holland, Tangent law of refraction for heat

conduction through an interface and underlying varia-

tional principle, Am. J. Phys. 58 (1990) 988–991.

[25] S. Sieniutycz, Dynamic programming approach to a

Fermat type principle for heat flow, Int. J. Heat Mass

Transfer 43 (2000) 3453–3468.

[26] R.E. Bellman, Adaptive Control Processes: a Guided Tour,

Princeton University Press, Princeton, 1961.

[27] R. Aris, Discrete Dynamic Programming, Blaisdell, New

York, 1964.


	Nonlinear macrokinetics of heat and mass transfer and chemical or electrochemical reactions
	Introduction
	Thermodynamics of multiphase systems
	Example of boiling as a chemical reaction
	Introduction to nonlinear models of thermokinetics
	Kinetics of Marcelin-de Donder
	General equations of nonlinear thermokinetics
	Nonlinear coupled transport of mass and heat
	Description of reaction rates by a field method applied to a continuum
	Conclusions
	Acknowledgements
	References


